<?xml version="1.0" encoding="UTF-8" ?>
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title > 3D modeling of building indoor spaces and closed doors from imagery and point clouds </ dc:title >
< dc:creator > Díaz Vilariño, Lucía </ dc:creator >
< dc:creator > Khoshelham, Kourosh </ dc:creator >
< dc:creator > Martínez Sánchez, Joaquín </ dc:creator >
< dc:creator > Arias Sánchez, Pedro </ dc:creator >
< dc:subject > 33 Ciencias Tecnológicas </ dc:subject >
< dc:subject > 3305.22 Metrología de la Edificación </ dc:subject >
< dc:description > 3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. </ dc:description >
< dc:description > Ministerio de Economía y Competitividad | Ref. FPU AP2010-2969 </ dc:description >
< dc:date > 2026-01-13T17:45:27Z </ dc:date >
< dc:date > 2026-01-13T17:45:27Z </ dc:date >
< dc:date > 2015-02-03 </ dc:date >
< dc:date > 2026-01-02T18:16:16Z </ dc:date >
< dc:type > article </ dc:type >
< dc:identifier > Sensors, 15(2): 3491-3512 (2015) </ dc:identifier >
< dc:identifier > 14248220 </ dc:identifier >
< dc:identifier > http://hdl.handle.net/11093/10944 </ dc:identifier >
< dc:identifier > 10.3390/s150203491 </ dc:identifier >
< dc:identifier > https://www.mdpi.com/1424-8220/15/2/3491 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:rights > Attribution 4.0 International </ dc:rights >
< dc:rights > https://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > openAccess </ dc:rights >
< dc:publisher > Sensors </ dc:publisher >
< dc:publisher > Deseño na enxeñaría </ dc:publisher >
< dc:publisher > Enxeñaría dos recursos naturais e medio ambiente </ dc:publisher >
< dc:publisher > Xeotecnoloxías Aplicadas </ dc:publisher >
</ oai_dc:dc >
<?xml version="1.0" encoding="UTF-8" ?>
< d:DIDL schemaLocation =" urn:mpeg:mpeg21:2002:02-DIDL-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd " >
< d:DIDLInfo >
< dcterms:created schemaLocation =" http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/dcterms.xsd " > 2026-01-13T17:45:27Z </ dcterms:created >
</ d:DIDLInfo >
< d:Item id =" hdl_11093_10944 " >
< d:Descriptor >
< d:Statement mimeType =" application/xml; charset=utf-8 " >
< dii:Identifier schemaLocation =" urn:mpeg:mpeg21:2002:01-DII-NS http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd " > urn:hdl:11093/10944 </ dii:Identifier >
</ d:Statement >
</ d:Descriptor >
< d:Descriptor >
< d:Statement mimeType =" application/xml; charset=utf-8 " >
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dc:title > 3D modeling of building indoor spaces and closed doors from imagery and point clouds </ dc:title >
< dc:creator > Díaz Vilariño, Lucía </ dc:creator >
< dc:creator > Khoshelham, Kourosh </ dc:creator >
< dc:creator > Martínez Sánchez, Joaquín </ dc:creator >
< dc:creator > Arias Sánchez, Pedro </ dc:creator >
< dc:description > 3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. </ dc:description >
< dc:date > 2026-01-13T17:45:27Z </ dc:date >
< dc:date > 2026-01-13T17:45:27Z </ dc:date >
< dc:date > 2015-02-03 </ dc:date >
< dc:date > 2026-01-02T18:16:16Z </ dc:date >
< dc:type > article </ dc:type >
< dc:identifier > Sensors, 15(2): 3491-3512 (2015) </ dc:identifier >
< dc:identifier > 14248220 </ dc:identifier >
< dc:identifier > http://hdl.handle.net/11093/10944 </ dc:identifier >
< dc:identifier > 10.3390/s150203491 </ dc:identifier >
< dc:identifier > https://www.mdpi.com/1424-8220/15/2/3491 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:rights > https://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > openAccess </ dc:rights >
< dc:rights > Attribution 4.0 International </ dc:rights >
< dc:publisher > Sensors </ dc:publisher >
< dc:publisher > Deseño na enxeñaría </ dc:publisher >
< dc:publisher > Enxeñaría dos recursos naturais e medio ambiente </ dc:publisher >
< dc:publisher > Xeotecnoloxías Aplicadas </ dc:publisher >
</ oai_dc:dc >
</ d:Statement >
</ d:Descriptor >
< d:Component id =" 11093_10944_4 " >
</ d:Component >
</ d:Item >
</ d:DIDL >
<?xml version="1.0" encoding="UTF-8" ?>
< dim:dim schemaLocation =" http://www.dspace.org/xmlns/dspace/dim http://www.dspace.org/schema/dim.xsd " >
< dim:field authority =" 6707 " confidence =" 600 " element =" contributor " mdschema =" dc " qualifier =" author " > Díaz Vilariño, Lucía </ dim:field >
< dim:field authority =" c25ad9b6-09d9-48e4-91fb-d3e3581bff60 " confidence =" 600 " element =" contributor " mdschema =" dc " qualifier =" author " > Khoshelham, Kourosh </ dim:field >
< dim:field authority =" 5320 " confidence =" 600 " element =" contributor " mdschema =" dc " qualifier =" author " > Martínez Sánchez, Joaquín </ dim:field >
< dim:field authority =" 1501 " confidence =" 600 " element =" contributor " mdschema =" dc " qualifier =" author " > Arias Sánchez, Pedro </ dim:field >
< dim:field element =" date " mdschema =" dc " qualifier =" accessioned " > 2026-01-13T17:45:27Z </ dim:field >
< dim:field element =" date " mdschema =" dc " qualifier =" available " > 2026-01-13T17:45:27Z </ dim:field >
< dim:field element =" date " mdschema =" dc " qualifier =" issued " > 2015-02-03 </ dim:field >
< dim:field element =" date " mdschema =" dc " qualifier =" updated " > 2026-01-02T18:16:16Z </ dim:field >
< dim:field element =" identifier " lang =" spa " mdschema =" dc " qualifier =" citation " > Sensors, 15(2): 3491-3512 (2015) </ dim:field >
< dim:field element =" identifier " mdschema =" dc " qualifier =" issn " > 14248220 </ dim:field >
< dim:field element =" identifier " mdschema =" dc " qualifier =" uri " > http://hdl.handle.net/11093/10944 </ dim:field >
< dim:field element =" identifier " mdschema =" dc " qualifier =" doi " > 10.3390/s150203491 </ dim:field >
< dim:field element =" identifier " lang =" spa " mdschema =" dc " qualifier =" editor " > https://www.mdpi.com/1424-8220/15/2/3491 </ dim:field >
< dim:field element =" description " lang =" en " mdschema =" dc " qualifier =" abstract " > 3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. </ dim:field >
< dim:field element =" description " lang =" spa " mdschema =" dc " qualifier =" sponsorship " > Ministerio de Economía y Competitividad | Ref. FPU AP2010-2969 </ dim:field >
< dim:field element =" language " lang =" spa " mdschema =" dc " qualifier =" iso " > eng </ dim:field >
< dim:field element =" publisher " lang =" spa " mdschema =" dc " > Sensors </ dim:field >
< dim:field element =" publisher " lang =" spa " mdschema =" dc " qualifier =" departamento " > Deseño na enxeñaría </ dim:field >
< dim:field element =" publisher " lang =" spa " mdschema =" dc " qualifier =" departamento " > Enxeñaría dos recursos naturais e medio ambiente </ dim:field >
< dim:field element =" publisher " lang =" spa " mdschema =" dc " qualifier =" grupoinvestigacion " > Xeotecnoloxías Aplicadas </ dim:field >
< dim:field element =" rights " mdschema =" dc " > Attribution 4.0 International </ dim:field >
< dim:field element =" rights " mdschema =" dc " qualifier =" uri " > https://creativecommons.org/licenses/by/4.0/ </ dim:field >
< dim:field element =" rights " lang =" spa " mdschema =" dc " qualifier =" accessRights " > openAccess </ dim:field >
< dim:field element =" title " lang =" en " mdschema =" dc " > 3D modeling of building indoor spaces and closed doors from imagery and point clouds </ dim:field >
< dim:field element =" type " lang =" spa " mdschema =" dc " > article </ dim:field >
< dim:field element =" subject " lang =" spa " mdschema =" dc " qualifier =" unesco " > 33 Ciencias Tecnológicas </ dim:field >
< dim:field element =" subject " lang =" spa " mdschema =" dc " qualifier =" unesco " > 3305.22 Metrología de la Edificación </ dim:field >
< dim:field element =" computerCitation " lang =" spa " mdschema =" dc " > pub_title=Sensors|volume=15|journal_number=2|start_pag=3491|end_pag=3512 </ dim:field >
</ dim:dim >
<?xml version="1.0" encoding="UTF-8" ?>
< thesis schemaLocation =" http://www.ndltd.org/standards/metadata/etdms/1.0/ http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd " >
< title > 3D modeling of building indoor spaces and closed doors from imagery and point clouds </ title >
< creator > Díaz Vilariño, Lucía </ creator >
< creator > Khoshelham, Kourosh </ creator >
< creator > Martínez Sánchez, Joaquín </ creator >
< creator > Arias Sánchez, Pedro </ creator >
< description > 3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. </ description >
< date > 2026-01-13 </ date >
< date > 2026-01-13 </ date >
< date > 2015-02-03 </ date >
< date > 2026-01-02 </ date >
< type > article </ type >
< identifier > Sensors, 15(2): 3491-3512 (2015) </ identifier >
< identifier > 14248220 </ identifier >
< identifier > http://hdl.handle.net/11093/10944 </ identifier >
< identifier > 10.3390/s150203491 </ identifier >
< identifier > https://www.mdpi.com/1424-8220/15/2/3491 </ identifier >
< language > eng </ language >
< rights > https://creativecommons.org/licenses/by/4.0/ </ rights >
< rights > openAccess </ rights >
< rights > Attribution 4.0 International </ rights >
< publisher > Sensors </ publisher >
< publisher > Deseño na enxeñaría </ publisher >
< publisher > Enxeñaría dos recursos naturais e medio ambiente </ publisher >
< publisher > Xeotecnoloxías Aplicadas </ publisher >
</ thesis >
<?xml version="1.0" encoding="UTF-8" ?>
< record schemaLocation =" http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd " >
< leader > 00925njm 22002777a 4500 </ leader >
< datafield ind1 =" " ind2 =" " tag =" 042 " >
< subfield code =" a " > dc </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Díaz Vilariño, Lucía </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Khoshelham, Kourosh </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Martínez Sánchez, Joaquín </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 720 " >
< subfield code =" a " > Arias Sánchez, Pedro </ subfield >
< subfield code =" e " > author </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 260 " >
< subfield code =" c " > 2015-02-03 </ subfield >
</ datafield >
< datafield ind1 =" " ind2 =" " tag =" 520 " >
< subfield code =" a " > 3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > Sensors, 15(2): 3491-3512 (2015) </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > 14248220 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > http://hdl.handle.net/11093/10944 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > 10.3390/s150203491 </ subfield >
</ datafield >
< datafield ind1 =" 8 " ind2 =" " tag =" 024 " >
< subfield code =" a " > https://www.mdpi.com/1424-8220/15/2/3491 </ subfield >
</ datafield >
< datafield ind1 =" 0 " ind2 =" 0 " tag =" 245 " >
< subfield code =" a " > 3D modeling of building indoor spaces and closed doors from imagery and point clouds </ subfield >
</ datafield >
</ record >
<?xml version="1.0" encoding="UTF-8" ?>
< mets ID =" DSpace_ITEM_11093-10944 " OBJID =" hdl:11093/10944 " PROFILE =" DSpace METS SIP Profile 1.0 " TYPE =" DSpace ITEM " schemaLocation =" http://www.loc.gov/METS/ http://www.loc.gov/standards/mets/mets.xsd " >
< metsHdr CREATEDATE =" 2026-01-14T03:34:30Z " >
< agent ROLE =" CUSTODIAN " TYPE =" ORGANIZATION " >
< name > Investigo </ name >
</ agent >
</ metsHdr >
< dmdSec ID =" DMD_11093_10944 " >
< mdWrap MDTYPE =" MODS " >
< xmlData schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Díaz Vilariño, Lucía </ mods:namePart >
</ mods:name >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Khoshelham, Kourosh </ mods:namePart >
</ mods:name >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Martínez Sánchez, Joaquín </ mods:namePart >
</ mods:name >
< mods:name >
< mods:role >
< mods:roleTerm type =" text " > author </ mods:roleTerm >
</ mods:role >
< mods:namePart > Arias Sánchez, Pedro </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAccessioned encoding =" iso8601 " > 2026-01-13T17:45:27Z </ mods:dateAccessioned >
</ mods:extension >
< mods:extension >
< mods:dateAvailable encoding =" iso8601 " > 2026-01-13T17:45:27Z </ mods:dateAvailable >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2015-02-03 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" citation " > Sensors, 15(2): 3491-3512 (2015) </ mods:identifier >
< mods:identifier type =" issn " > 14248220 </ mods:identifier >
< mods:identifier type =" uri " > http://hdl.handle.net/11093/10944 </ mods:identifier >
< mods:identifier type =" doi " > 10.3390/s150203491 </ mods:identifier >
< mods:identifier type =" editor " > https://www.mdpi.com/1424-8220/15/2/3491 </ mods:identifier >
< mods:abstract > 3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. </ mods:abstract >
< mods:language >
< mods:languageTerm authority =" rfc3066 " > eng </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > Attribution 4.0 International </ mods:accessCondition >
< mods:titleInfo >
< mods:title > 3D modeling of building indoor spaces and closed doors from imagery and point clouds </ mods:title >
</ mods:titleInfo >
< mods:genre > article </ mods:genre >
</ mods:mods >
</ xmlData >
</ mdWrap >
</ dmdSec >
< amdSec ID =" TMD_11093_10944 " >
< rightsMD ID =" RIG_11093_10944 " >
< mdWrap MDTYPE =" OTHER " MIMETYPE =" text/plain " OTHERMDTYPE =" DSpaceDepositLicense " >
< binData > TElDRU5DSUEgSU5WRVNUSUdPCgpDb24gb2JqZXRvIGRlIHF1ZSBJbnZlc3RpZ28gcHVlZGEgYXJjaGl2YXIgeSBkaWZ1bmRpciBsb3MgZG9jdW1lbnRvcyBxdWUgc2UgZGVwb3NpdGFuIGVuIMOpbCwgc2UgbmVjZXNpdGEgbGEgYXV0b3JpemFjacOzbiBkZSBsYS9zIGF1dG9yYS9zIG8gYXV0b3IvZXMgZGUgbG9zIGRvY3VtZW50b3MgbWVkaWFudGUgbGEgcHJlc2VudGUgbGljZW5jaWEgZGUgZGlzdHJpYnVjacOzbiBubyBleGNsdXNpdmEgKOKAnExpY2VuY2lhIEludmVzdGlnb+KAnSkuIAoKQWwgb3RvcmdhciBlc3RhIGxpY2VuY2lhLCBsYS9zIGF1dG9yYS9zIG8gYXV0b3IvZXMgZGUgbG9zIGRvY3VtZW50b3MgbWFudGllbmVuIGVuIHN1IHBvZGVyIGxhIHRvdGFsaWRhZCBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IsIHB1ZGllbmRvLCBwb3IgdGFudG8sIGhhY2VyIHVzbyBkZWwgdHJhYmFqbyBkZXBvc2l0YWRvIGVuIGxhIGZvcm1hIGVuIHF1ZSBlc3RpbWVuIG9wb3J0dW5vIChkZXBvc2l0YXJsbyBlbiBvdHJvcyByZXBvc2l0b3Jpb3MsIHB1YmxpY2FybG8gZW4gbWVkaW9zIGNvbWVyY2lhbGVzLCBkaWZ1bmRpw6luZG9sbyBlbiBzdSBww6FnaW5hIHdlYiwgZXRjLikuIAoKUG9yIGZhdm9yLCBsZWEgYXRlbnRhbWVudGUgbG9zIHTDqXJtaW5vcyBxdWUgYSBjb250aW51YWNpw7NuIHNlIHNlw7FhbGFuLCBlbiBsb3MgY3VhbGVzIHVzdGVkIHBlcm1pdGUgbyBhdXRvcml6YSBlbCBkZXDDs3NpdG8geSBkaWZ1c2nDs24gZGUgc3UgZG9jdW1lbnRvIGVuIEludmVzdGlnbzoKCkVuIHN1IGNvbmRpY2nDs24gZGUgYXV0b3IvYSBvIHByb3BpZXRhcmlvL2EgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB1c3RlZDoKCjEuLSBPdG9yZ2EgYSBsYSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBhIGFyY2hpdmFyLCByZXByb2R1Y2lyLCBjb252ZXJ0aXIgZW4gbGEgZm9ybWEgcXVlIG3DoXMgYWJham8gc2UgZGVzY3JpYmUsIGNvbXVuaWNhciBvIGRpc3RyaWJ1aXIgdW5pdmVyc2FsbWVudGUgZWwgZG9jdW1lbnRvIGVuIGZvcm1hdG8gZWxlY3Ryw7NuaWNvOwoKMi4tIEF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWRlIGRlIFZpZ28gYSBjb25zZXJ2YXIgbcOhcyBkZSB1bmEgY29waWEgZGUgc3UgZG9jdW1lbnRvIHkgYSBxdWUsIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkbywgbG8gcHVlZGEgY29udmVydGlyIGEgY3VhbHF1aWVyIG90cm8gZm9ybWF0byBkZSBmaWNoZXJvLCBtZWRpbyBvIHNvcG9ydGUsIGNvbiBwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQsIHByZXNlcnZhY2nDs24geSBhY2Nlc287IAoKMy4tIE1hbmlmaWVzdGEgcXVlIGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVzIHVuIHRyYWJham8gb3JpZ2luYWwgc3V5byB5IHF1ZSBlc3TDoSBsZWdpdGltYWRvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSBkaXN0cmlidWNpw7NuLiBEZSBsYSBtaXNtYSBmb3JtYSBkZWNsYXJhIHF1ZSwgZW4gbGEgbWVkaWRhIGRlIGxvIHF1ZSBsZSByZXN1bHRhIHBvc2libGUgY29ub2Nlciwgc3UgZG9jdW1lbnRvIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgZGUgbmluZ3VuYSBvdHJhIHBlcnNvbmEgbyBlbnRpZGFkOwoKNC4tIEFmaXJtYSBxdWUsIGVuIGVsIGNhc28gZGUgcXVlIHNlIHRyYXRlIGRlIHVuYSBvYnJhIGNvbiBtw6FzIGRlIHVuYSBhdXRvcsOtYSwgbGEgZGVwb3NpdGEgZW4gbm9tYnJlIHkgY29uIGVsIGNvbnNlbnRpbWllbnRvIGRlbCByZXN0byBkZSBjb2F1dG9yZXMgZSBjb2F1dG9yYXM7IAoKNS4tIERlY2xhcmEgcXVlLCBlbiBlbCBjYXNvIGRlIHF1ZSBlbCBkb2N1bWVudG8gY29udGVuZ2EgbWF0ZXJpYWwgZGVsIHF1ZSBubyBwb3NlZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IsIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGUgbGEgcGVyc29uYSBwcm9waWV0YXJpYSBkZSB0YWxlcyBkZXJlY2hvcyBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgYXPDrSBjb21vIHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3MgY29ycmVzcG9uZGVuIGEgdGVyY2VyYXMgcGVyc29uYXMgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbzsgCgo2Li0gUmVjb25vY2UgcXVlIHNpIGVsIGRvY3VtZW50byBzZSBiYXNhIGVuIHRyYWJham9zIHBhdHJvY2luYWRvcyBvIGZpbmFuY2lhZG9zIHBvciB1bmEgb3JnYW5pemFjacOzbiBvIGluc3RpdHVjacOzbiBkaWZlcmVudGUgZGUgbGEgVW5pdmVyc2lkYWRlIGRlIFZpZ28sIGhhIGN1bXBsaWRvIGNvbiBjdWFscXVpZXIgZGVyZWNobyB1IG9ibGlnYWNpw7NuIGVzdGFibGVjaWRhIHBvciBlbCBjb3JyZXNwb25kaWVudGUgY29udHJhdG8gbyBhY3VlcmRvIGNvbiBkaWNoYSBvcmdhbml6YWNpw7NuLgoKCkVuIHZpcnR1ZCBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgbGEgVW5pdmVyc2lkYWRlIGRlIFZpZ28gc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgZWwgbm9tYnJlIGRlIGxhL3MgYXV0b3JhL3MgbyBhdXRvci9lcyBjb21vIHByb3BpZXRhcmlhcy9vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvLCBzaW4gcmVhbGl6YXIgYWx0ZXJhY2nDs24gYWxndW5hIGRlbCBtaXNtbyBleGNlcHRvIGxhcyBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2VuY2lhLgoKCkxJQ0VOWkEgSU5WRVNUSUdPCgpDbyBvYnhlY3RvIGRlIHF1ZSBJbnZlc3RpZ28gcG9pZGEgYXJxdWl2YXIgZSBkaWZ1bmRpciBvcyBkb2N1bWVudG9zIHF1ZSBzZSBkZXBvc2l0YW4gbmVsLCBuZWNlc8OtdGFzZSBhIGF1dG9yaXphY2nDs24gZGFzIGF1dG9yYXMgb3UgYXV0b3JlcyBkb3MgZG9jdW1lbnRvcyBtZWRpYW50ZSBhIHByZXNlbnRlIGxpY2VuemEgZGUgZGlzdHJpYnVjacOzbiBub24gZXhjbHVzaXZhICjCq0xpY2VuemEgSW52ZXN0aWdvwrspLgoKQW8gb3V0b3JnYXIgZXN0YSBsaWNlbnphLCBhcyBhdXRvcmFzIG91IGF1dG9yZXMgZG9zIGRvY3VtZW50b3MgbWFudGXDsWVuIG5vIHNldSBwb2RlciBhIHRvdGFsaWRhZGUgZG9zIGRlcmVpdG9zIGRlIGF1dG9yIGUgcG9kZW4sIHBvbG8gdGFudG8sIGZhY2VyIHVzbyBkbyB0cmFiYWxsbyBkZXBvc2l0YWRvIG5hIGZvcm1hIGVuIHF1ZSBlc3RpbWUgb3BvcnR1bm8gKGRlcG9zaXRhbG8gbm91dHJvcyByZXBvc2l0b3Jpb3MsIHB1YmxpY2FsbyBlbiBtZWRpb3MgY29tZXJjaWFpcywgZGlmdW5kaWxvIGEgdHJhdsOpcyBkYSBzw7phIHDDoXhpbmEgd2ViLCBldGMuKS4KClBvciBmYXZvciwgbGVhIGF0ZW50YW1lbnRlIG9zIHRlcm1vcyBxdWUgYSBjb250aW51YWNpw7NuIHNlIHNpbmFsYW4sIG5vcyBjYWxlcyB2b3N0ZWRlIHBlcm1pdGUgb3UgYXV0b3JpemEgbyBkZXDDs3NpdG8gZSBkaWZ1c2nDs24gZG8gc2V1IGRvY3VtZW50byBlbiBJbnZlc3RpZ286CgpOYSBzw7phIGNvbmRpY2nDs24gZGUgYXV0b3IvYXV0b3JhIG91IHByb3BpZXRhcmlhL3Byb3BpZXRhcmlvIGRvcyBkZXJlaXRvcyBkZSBhdXRvciwgdm9zdGVkZToKCjEuLSBPdXTDs3JnYWxsZSDDoSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBvIGRlcmVpdG8gbm9uIGV4Y2x1c2l2byBhIGFycXVpdmFyLCByZXByb2R1Y2lyLCBjb252ZXJ0ZXIgbmEgZm9ybWEgcXVlIG3DoWlzIGFiYWl4byBzZSBkZXNjcmliZSwgY29tdW5pY2FyIG91IGRpc3RyaWJ1w61yIHVuaXZlcnNhbG1lbnRlIG8gZG9jdW1lbnRvIGVuIGZvcm1hdG8gZWxlY3Ryw7NuaWNvLgoKMi4tIEF1dG9yw616YWxsZSDDoSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBhIGNvbnNlcnZhciBtw6FpcyBkdW5oYSBjb3BpYSBkbyBzZXUgZG9jdW1lbnRvIGUgYSBxdWUsIHNlbiBhbHRlcmFyIG8gc2V1IGNvbnRpZG8sIG8gcG9pZGEgY29udmVydGVyIGEgY2FscXVlcmEgb3V0cm8gZm9ybWF0byBkZSBmaWNoZWlybywgbWVkaW8gb3Ugc29wb3J0ZSwgY29uIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZGUsIHByZXNlcnZhY2nDs24gZSBhY2Nlc28uCgozLi0gTWFuaWZlc3RhIHF1ZSBvIGRvY3VtZW50byBkZXBvc2l0YWRvIMOpIHVuIHRyYWJhbGxvIG9yaXhpbmFsIHByb3BpbyBlIHF1ZSBlc3TDoSBsZXhpdGltYWRvIHBhcmEgb3V0b3JnYXIgb3MgZGVyZWl0b3MgY29udGlkb3MgbmEgcHJlc2VudGUgbGljZW56YSBkZSBkaXN0cmlidWNpw7NuLiBEYSBtZXNtYSBmb3JtYSBkZWNsYXJhIHF1ZSwgbmEgbWVkaWRhIGRvIHF1ZSBsbGUgcmVzdWx0YSBwb3NpYmxlIGNvw7FlY2VyLCBvIHNldSBkb2N1bWVudG8gbm9uIGluZnJpbnhlIG9zIGRlcmVpdG9zIGRlIGF1dG9yLCBkZSBuaW5ndW5oYSBvdXRyYSBwZXJzb2Egb3UgZW50aWRhZGUuCgo0Li0gQWZpcm1hIHF1ZSwgbm8gY2FzbyBkZSBxdWUgc2UgdHJhdGUgZHVuaGEgb2JyYSBjb24gbcOhaXMgZHVuaGEgYXV0b3LDrWEsIGRlcG9zw610YWEgZW4gbm9tZSBlIGNvIGNvbnNlbnRpbWVudG8gZG8gcmVzdG8gZGUgY29hdXRvcmVzIGUgY29hdXRvcmFzLgoKNS4tIERlY2xhcmEgcXVlLCBubyBjYXNvIGRlIHF1ZSBvIGRvY3VtZW50byBjb250ZcOxYSBtYXRlcmlhbCBkbyBxdWUgbm9uIHBvc8O6ZSBvcyBkZXJlaXRvcyBkZSBhdXRvciwgb2J0aXZvIG8gcGVybWlzbyBkYSBwZXJzb2EgcHJvcGlldGFyaWEgZGUgdGFsZXMgZGVyZWl0b3MgcGFyYSBvdXRvcmdhcmxsZSDDoSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBvcyBkZXJlaXRvcyByZXF1aXJpZG9zIHBvciBlc3RhIGxpY2VuemEsIGFzw60gY29tbyBxdWUgZXNlIG1hdGVyaWFsIGN1eG9zIGRlcmVpdG9zIGNvcnJlc3BvbmRlbiBhIHRlcmNlaXJhcyBwZXJzb2FzIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb8OxZWNpZG8gbm8gdGV4dG8gb3UgY29udGlkbyBkbyBkb2N1bWVudG8gZGVwb3NpdGFkby4KCjYuLSBSZWNvw7FlY2UgcXVlIHNlIG8gZG9jdW1lbnRvIHNlIGJhc2VhIGVuIHRyYWJhbGxvcyBwYXRyb2NpbmFkb3Mgb3UgZmluYW5jaWFkb3MgcG9yIHVuaGEgb3JnYW5pemFjacOzbiBvdSBpbnN0aXR1Y2nDs24gZGlmZXJlbnRlIGRhIFVuaXZlcnNpZGFkZSBkZSBWaWdvLCBjdW1wcml1IGNvbiBjYWxxdWVyYSBkZXJlaXRvIG91IG9icmlnYSBlc3RhYmxlY2lkYSBwb2xvIGNvcnJlc3BvbmRlbnRlIGNvbnRyYXRvIG91IGFjb3JkbyBjb2EgZGV2YW5kaXRhIG9yZ2FuaXphY2nDs24uIAoKCkVuIHZpcnR1ZGUgZGEgcHJlc2VudGUgbGljZW56YSwgYSBVbml2ZXJzaWRhZGUgZGUgVmlnbyBjb21wcm9tw6l0ZXNlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIG5vbWUgZGFzIGF1dG9yYXMgZSBhdXRvcmVzLCBhc8OtIGNvbW8gZGFzIHByb3BpZXRhcmlhcyBvdSBwcm9waWV0YXJpb3MgZG9zIGRlcmVpdG9zIGRvIGRvY3VtZW50byBkZXBvc2l0YWRvLCBzZW4gcmVhbGl6YXJsbGUgbmluZ3VuaGEgbW9kaWZpY2FjacOzbiBhZ8OhcyBhcyBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2VuemEuCg== </ binData >
</ mdWrap >
</ rightsMD >
</ amdSec >
< amdSec ID =" FO_11093_10944_4 " >
< techMD ID =" TECH_O_11093_10944_4 " >
< mdWrap MDTYPE =" PREMIS " >
< xmlData schemaLocation =" http://www.loc.gov/standards/premis http://www.loc.gov/standards/premis/PREMIS-v1-0.xsd " >
< premis:premis >
< premis:object >
< premis:objectIdentifier >
< premis:objectIdentifierType > URL </ premis:objectIdentifierType >
< premis:objectIdentifierValue > https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/10944/4/2015_diaz_3d_modeling.pdf </ premis:objectIdentifierValue >
</ premis:objectIdentifier >
< premis:objectCategory > File </ premis:objectCategory >
< premis:objectCharacteristics >
< premis:fixity >
< premis:messageDigestAlgorithm > MD5 </ premis:messageDigestAlgorithm >
< premis:messageDigest > 64fac7161413c931c1c4036544359598 </ premis:messageDigest >
</ premis:fixity >
< premis:size > 9969245 </ premis:size >
< premis:format >
< premis:formatDesignation >
< premis:formatName > application/pdf </ premis:formatName >
</ premis:formatDesignation >
</ premis:format >
</ premis:objectCharacteristics >
< premis:originalName > 2015_diaz_3d_modeling.pdf </ premis:originalName >
</ premis:object >
</ premis:premis >
</ xmlData >
</ mdWrap >
</ techMD >
</ amdSec >
< fileSec >
< fileGrp USE =" ORIGINAL " >
< file ADMID =" FO_11093_10944_4 " CHECKSUM =" 64fac7161413c931c1c4036544359598 " CHECKSUMTYPE =" MD5 " GROUPID =" GROUP_BITSTREAM_11093_10944_4 " ID =" BITSTREAM_ORIGINAL_11093_10944_4 " MIMETYPE =" application/pdf " SEQ =" 4 " SIZE =" 9969245 " >
</ file >
</ fileGrp >
</ fileSec >
< structMap LABEL =" DSpace Object " TYPE =" LOGICAL " >
< div ADMID =" DMD_11093_10944 " TYPE =" DSpace Object Contents " >
< div TYPE =" DSpace BITSTREAM " >
</ div >
</ div >
</ structMap >
</ mets >
<?xml version="1.0" encoding="UTF-8" ?>
< mods:mods schemaLocation =" http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-1.xsd " >
< mods:name >
< mods:namePart > Díaz Vilariño, Lucía </ mods:namePart >
</ mods:name >
< mods:name >
< mods:namePart > Khoshelham, Kourosh </ mods:namePart >
</ mods:name >
< mods:name >
< mods:namePart > Martínez Sánchez, Joaquín </ mods:namePart >
</ mods:name >
< mods:name >
< mods:namePart > Arias Sánchez, Pedro </ mods:namePart >
</ mods:name >
< mods:extension >
< mods:dateAvailable encoding =" iso8601 " > 2026-01-13T17:45:27Z </ mods:dateAvailable >
</ mods:extension >
< mods:extension >
< mods:dateAccessioned encoding =" iso8601 " > 2026-01-13T17:45:27Z </ mods:dateAccessioned >
</ mods:extension >
< mods:originInfo >
< mods:dateIssued encoding =" iso8601 " > 2015-02-03 </ mods:dateIssued >
</ mods:originInfo >
< mods:identifier type =" citation " > Sensors, 15(2): 3491-3512 (2015) </ mods:identifier >
< mods:identifier type =" issn " > 14248220 </ mods:identifier >
< mods:identifier type =" uri " > http://hdl.handle.net/11093/10944 </ mods:identifier >
< mods:identifier type =" doi " > 10.3390/s150203491 </ mods:identifier >
< mods:identifier type =" editor " > https://www.mdpi.com/1424-8220/15/2/3491 </ mods:identifier >
< mods:abstract > 3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. </ mods:abstract >
< mods:language >
< mods:languageTerm > eng </ mods:languageTerm >
</ mods:language >
< mods:accessCondition type =" useAndReproduction " > https://creativecommons.org/licenses/by/4.0/ </ mods:accessCondition >
< mods:accessCondition type =" useAndReproduction " > openAccess </ mods:accessCondition >
< mods:accessCondition type =" useAndReproduction " > Attribution 4.0 International </ mods:accessCondition >
< mods:titleInfo >
< mods:title > 3D modeling of building indoor spaces and closed doors from imagery and point clouds </ mods:title >
</ mods:titleInfo >
< mods:genre > article </ mods:genre >
</ mods:mods >
<?xml version="1.0" encoding="UTF-8" ?>
< atom:entry schemaLocation =" http://www.w3.org/2005/Atom http://www.kbcafe.com/rss/atom.xsd.xml " >
< atom:id > http://hdl.handle.net/11093/10944/ore.xml </ atom:id >
< atom:published > 2026-01-13T17:45:27Z </ atom:published >
< atom:updated > 2026-01-13T17:45:27Z </ atom:updated >
< atom:source >
< atom:generator > Investigo </ atom:generator >
</ atom:source >
< atom:title > 3D modeling of building indoor spaces and closed doors from imagery and point clouds </ atom:title >
< atom:author >
< atom:name > Díaz Vilariño, Lucía </ atom:name >
</ atom:author >
< atom:author >
< atom:name > Khoshelham, Kourosh </ atom:name >
</ atom:author >
< atom:author >
< atom:name > Martínez Sánchez, Joaquín </ atom:name >
</ atom:author >
< atom:author >
< atom:name > Arias Sánchez, Pedro </ atom:name >
</ atom:author >
< oreatom:triples >
< rdf:Description about =" http://hdl.handle.net/11093/10944/ore.xml#atom " >
< dcterms:modified > 2026-01-13T17:45:27Z </ dcterms:modified >
</ rdf:Description >
< rdf:Description about =" https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/10944/4/2015_diaz_3d_modeling.pdf " >
< dcterms:description > ORIGINAL </ dcterms:description >
</ rdf:Description >
< rdf:Description about =" https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/10944/2/license.txt " >
< dcterms:description > LICENSE </ dcterms:description >
</ rdf:Description >
< rdf:Description about =" https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/11093/10944/3/sword.zip " >
< dcterms:description > SWORD </ dcterms:description >
</ rdf:Description >
</ oreatom:triples >
</ atom:entry >
<?xml version="1.0" encoding="UTF-8" ?>
< qdc:qualifieddc schemaLocation =" http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://dspace.org/qualifieddc/ http://www.ukoln.ac.uk/metadata/dcmi/xmlschema/qualifieddc.xsd " >
< dc:title > 3D modeling of building indoor spaces and closed doors from imagery and point clouds </ dc:title >
< dc:creator > Díaz Vilariño, Lucía </ dc:creator >
< dc:creator > Khoshelham, Kourosh </ dc:creator >
< dc:creator > Martínez Sánchez, Joaquín </ dc:creator >
< dc:creator > Arias Sánchez, Pedro </ dc:creator >
< dcterms:abstract > 3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. </ dcterms:abstract >
< dcterms:dateAccepted > 2026-01-13T17:45:27Z </ dcterms:dateAccepted >
< dcterms:available > 2026-01-13T17:45:27Z </ dcterms:available >
< dcterms:created > 2026-01-13T17:45:27Z </ dcterms:created >
< dcterms:issued > 2015-02-03 </ dcterms:issued >
< dc:type > article </ dc:type >
< dc:identifier > Sensors, 15(2): 3491-3512 (2015) </ dc:identifier >
< dc:identifier > 14248220 </ dc:identifier >
< dc:identifier > http://hdl.handle.net/11093/10944 </ dc:identifier >
< dc:identifier > 10.3390/s150203491 </ dc:identifier >
< dc:identifier > https://www.mdpi.com/1424-8220/15/2/3491 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:rights > https://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > openAccess </ dc:rights >
< dc:rights > Attribution 4.0 International </ dc:rights >
< dc:publisher > Sensors </ dc:publisher >
< dc:publisher > Deseño na enxeñaría </ dc:publisher >
< dc:publisher > Enxeñaría dos recursos naturais e medio ambiente </ dc:publisher >
< dc:publisher > Xeotecnoloxías Aplicadas </ dc:publisher >
</ qdc:qualifieddc >
<?xml version="1.0" encoding="UTF-8" ?>
< rdf:RDF schemaLocation =" http://www.openarchives.org/OAI/2.0/rdf/ http://www.openarchives.org/OAI/2.0/rdf.xsd " >
< ow:Publication about =" oai:www.investigo.biblioteca.uvigo.es:11093/10944 " >
< dc:title > 3D modeling of building indoor spaces and closed doors from imagery and point clouds </ dc:title >
< dc:creator > Díaz Vilariño, Lucía </ dc:creator >
< dc:creator > Khoshelham, Kourosh </ dc:creator >
< dc:creator > Martínez Sánchez, Joaquín </ dc:creator >
< dc:creator > Arias Sánchez, Pedro </ dc:creator >
< dc:description > 3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. </ dc:description >
< dc:date > 2026-01-13T17:45:27Z </ dc:date >
< dc:date > 2026-01-13T17:45:27Z </ dc:date >
< dc:date > 2015-02-03 </ dc:date >
< dc:date > 2026-01-02T18:16:16Z </ dc:date >
< dc:type > article </ dc:type >
< dc:identifier > Sensors, 15(2): 3491-3512 (2015) </ dc:identifier >
< dc:identifier > 14248220 </ dc:identifier >
< dc:identifier > http://hdl.handle.net/11093/10944 </ dc:identifier >
< dc:identifier > 10.3390/s150203491 </ dc:identifier >
< dc:identifier > https://www.mdpi.com/1424-8220/15/2/3491 </ dc:identifier >
< dc:language > eng </ dc:language >
< dc:rights > https://creativecommons.org/licenses/by/4.0/ </ dc:rights >
< dc:rights > openAccess </ dc:rights >
< dc:rights > Attribution 4.0 International </ dc:rights >
< dc:publisher > Sensors </ dc:publisher >
< dc:publisher > Deseño na enxeñaría </ dc:publisher >
< dc:publisher > Enxeñaría dos recursos naturais e medio ambiente </ dc:publisher >
< dc:publisher > Xeotecnoloxías Aplicadas </ dc:publisher >
</ ow:Publication >
</ rdf:RDF >
<?xml version="1.0" encoding="UTF-8" ?>
< oai_dc:dc schemaLocation =" http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd " >
< dcterms:dateAccepted > 2026-01-13T17:45:27Z </ dcterms:dateAccepted >
< dcterms:available > 2026-01-13T17:45:27Z </ dcterms:available >
< dcterms:issued > 2015-02-03 </ dcterms:issued >
< dcterms:identifier_bibliographicCitation lang =" spa " > Sensors, 15(2): 3491-3512 (2015) </ dcterms:identifier_bibliographicCitation >
< dcterms:identifier_issn > 14248220 </ dcterms:identifier_issn >
< dcterms:identifier_doi > 10.3390/s150203491 </ dcterms:identifier_doi >
< dcterms:identifier type =" dcterms:URI " > http://hdl.handle.net/11093/10944 </ dcterms:identifier >
< dcterms:identifier_editor lang =" spa " > https://www.mdpi.com/1424-8220/15/2/3491 </ dcterms:identifier_editor >
< dcterms:abstract lang =" en " > 3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. </ dcterms:abstract >
< dcterms:description_sponsorship lang =" spa " > Ministerio de Economía y Competitividad | Ref. FPU AP2010-2969 </ dcterms:description_sponsorship >
< dcterms:language type =" dcterms:ISO639-2 " lang =" spa " > eng </ dcterms:language >
< dcterms:publisher lang =" spa " > Sensors </ dcterms:publisher >
< dcterms:rights > Attribution 4.0 International </ dcterms:rights >
< dcterms:accessRights lang =" spa " > openAccess </ dcterms:accessRights >
< dcterms:rights_uri type =" dcterms:URI " > https://creativecommons.org/licenses/by/4.0/ </ dcterms:rights_uri >
< dcterms:title lang =" en " > 3D modeling of building indoor spaces and closed doors from imagery and point clouds </ dcterms:title >
< dcterms:type lang =" spa " > article </ dcterms:type >
< dcterms:computerCitation lang =" spa " > pub_title=Sensors|volume=15|journal_number=2|start_pag=3491|end_pag=3512 </ dcterms:computerCitation >
< dcterms:publisher_department lang =" spa " > Deseño na enxeñaría </ dcterms:publisher_department >
< dcterms:publisher_department lang =" spa " > Enxeñaría dos recursos naturais e medio ambiente </ dcterms:publisher_department >
< dcterms:publisher_group lang =" spa " > Xeotecnoloxías Aplicadas </ dcterms:publisher_group >
< dcterms:subject lang =" spa " > 33 Ciencias Tecnológicas </ dcterms:subject >
< dcterms:subject lang =" spa " > 3305.22 Metrología de la Edificación </ dcterms:subject >
< dcterms:authorList > 6707#Khoshelham, Kourosh#5320#1501 </ dcterms:authorList >
</ oai_dc:dc >
Se ha omitido la presentación del registro por ser demasiado largo. Si lo desea, puede descargárselo en el enlace anterior.
Xunta de Galicia. Información mantenida y publicada en internet por la Xunta de Galicia
Atención a la ciudadanía - Accesibilidad - Aviso legal - Mapa del portal